Revenue Monotonicity in Combinatorial Auctions

Kevin Leyton-Brown

Joint work with Baharak Rastegari and Anne Condon Based on a AAAI-2007 paper, with stronger results

Thanks to David Parkes, Ron Lavi and Daniel Lehmann for helpful discussions here at Dagstuhl!

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Outline				

- 2 Efficiency and Maximality
- 3 Criticality
- 4 Impossibility Result

(5) Conclusions

æ

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Setting				

- G, a set of m goods for sale
- N = {1,2,...,n}, the universal set of n bidders
 each may or may not participate in a given auction
- Each bidder *i* has a valuation $v_i : 2^G \to \mathbb{R}^+ \cup \{0\}$.
- A deterministic, direct combinatorial auction (CA) mechanism:
 - asks each bidder i to declare her valuation function \widehat{v}_i
 - allocates to i the bundle $a_i(\widehat{v})$
 - requires i to pay $p_i(\widehat{v})$
- The revenue of a CA mechanism is the sum of the payments made by the bidders, $R = \sum_{i \in N} p_i(\hat{v})$.

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Revenue I	Monotonicity			

- From single-good auctions, we have the intuition that adding bidders means more competition, and hence more revenue for the auctioneer.
 - Does this intuition extend to combinatorial auctions?

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Revenue	Monotonicity			

- From single-good auctions, we have the intuition that adding bidders means more competition, and hence more revenue for the auctioneer.
 - Does this intuition extend to combinatorial auctions?

A CA mechanism is revenue monotonic if dropping a bidder never increases the auction's revenue.

Definition (Revenue Monotonicity)

CA mechanism M is revenue monotonic (RM) if for all \hat{v} in the equilibrium of the mechanism and for all bidders j,

$$\sum_{i \in N} p_i(\widehat{v}) \ge \sum_{i \in N \setminus \{j\}} p_i(\widehat{v}_{-j}).$$

Impossibility Result

Conclusions

VCG is not Revenue Monotonic

E	Example (see e.g., [Ausubel & Milgrom, 2006])							
ſ	Bidder	$v(g_1)$	$v(g_2)$	$v(g_1,g_2)$	SW_{-i}	SW_{-i}	i pays	
					without i	with i		
ĺ	1	11	0	11				
	2	0	0	10				
	3	0	11	11				
L								

$$\begin{array}{c|c} g_1, \, g_2 \\ \hline g_1 & g_2 \\ \end{array}$$

Revenue Monotonicity in Combinatorial Auctions

Rastegari, Condon & Leyton-Brown, Slide 5

æ

イロン イヨン イヨン イヨン

Impossibility Result

Conclusions

VCG is not Revenue Monotonic

Example (see e.g., [Ausubel & Milgrom, 2006])								
$v(g_1)$	$v(g_1) \mid v(g_2) \mid v(g_1,g_2) \mid SW_{-i} \mid SW_{-i} \mid i$ pay							
			without i	with i				
11	0	11	11	11	0			
0	0	10	22	22	0			
0	11	11	11	11	0			
	(see e.g $v(g_1)$ 11 0 0	$\begin{array}{c c} (\text{see e.g., } [\text{Ausu} \\ \hline v(g_1) & v(g_2) \\ \hline 11 & 0 \\ 0 & 0 \\ 0 & 11 \\ \end{array}$	$\begin{array}{c c} \text{(see e.g., [Ausubel & Mil}\\ \hline v(g_1) & v(g_2) & v(g_1,g_2) \\ \hline 11 & 0 & 11 \\ 0 & 0 & 10 \\ 0 & 11 & 11 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

 $1 \ \text{and} \ 3 \ \text{win}$

Revenue = 0

$$\begin{array}{c|c} g_1, g_2 \\ \hline g_1 & g_2 \\ \end{array}$$

Revenue Monotonicity in Combinatorial Auctions

Rastegari, Condon & Leyton-Brown, Slide 5

æ

イロン イヨン イヨン イヨン

VCG is not Revenue Monotonic

E	Example (see e.g., [Ausubel & Milgrom, 2006])							
ſ	Bidder	$v(g_1)$	$v(g_2)$	$v(g_1,g_2)$	SW_{-i}	SW_{-i}	i pays	
					without i	with i		
Ī	1	11	θ	11				
	2	0	0	10				
	3	0	11	11				
1							,	

$$g_1, g_2$$

æ

- - 4 回 ト - 4 回 ト

Impossibility Result

Conclusions

VCG is not Revenue Monotonic

E	Example (see e.g., [Ausubel & Milgrom, 2006])								
ſ	Bidder	$v(g_1)$	$v(g_2)$	$v(g_2) \mid v(g_1, g_2) \mid SW_{-i} \mid SW_{-i} \mid i$ pays					
					without i	with i			
	1	11	θ	11					
	2	0	0	10	11	11	0		
	3	0	11	11	10	0	10		

3 wins

 $\mathsf{Revenue} = 10$

$$g_1, g_2$$

æ

イロン イヨン イヨン イヨン

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Plan of this	talk			

We are interested in whether this pathological revenue behavior can be avoided under other CA mechanisms.

• By the revelation principle, we can restrict attention to direct mechanisms.

In the rest of the talk I'll:

- Discuss desirable properties for CA mechanisms, including efficiency and relaxations
- Discuss single-mindedness and criticality
- Show that *no* deterministic, direct CA mechanism that satisfies our properties is revenue monotonic.
- Consider some consequences of this result.

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Outline				

2 Efficiency and Maximality

3 Criticality

Impossibility Result

5 Conclusions

3

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Properties				

For each bidder, declaring $\widehat{v}_i = v_i$ is a dominant strategy.

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Properties				

For each bidder, declaring $\widehat{v}_i = v_i$ is a dominant strategy.

Definition (Participation)

Whenever $v_i(a_i(\hat{v})) = 0$, $p_i = 0$.

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Properties				

For each bidder, declaring $\widehat{v}_i = v_i$ is a dominant strategy.

Definition (Participation)

Whenever $v_i(a_i(\hat{v})) = 0$, $p_i = 0$.

Definition (Consumer sovereignty)

For every bidder i, every set of bids \hat{v}_{-i} , and every bundle b_i there exists some finite amount $k_i \in \mathbb{R}$ such that if i declares a value of k_i for every bundle $b'_i \supseteq b_i$ and 0 for all other bundles, i is allocated at least b_i .

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Properties				

For each bidder, declaring $\widehat{v}_i = v_i$ is a dominant strategy.

Definition (Participation)

Whenever $v_i(a_i(\hat{v})) = 0$, $p_i = 0$.

Definition (Consumer sovereignty)

For every bidder i, every set of bids \hat{v}_{-i} , and every bundle b_i there exists some finite amount $k_i \in \mathbb{R}$ such that if i declares a value of k_i for every bundle $b'_i \supseteq b_i$ and 0 for all other bundles, i is allocated at least b_i .

Definition (Efficiency)

The chosen allocation maximizes the social welfare, $\sum_i v_i(a_i)$.

Efficiency is a very strong condition for us to require.

Theorem (Green & Laffont, 1977)

The only DS truthful and efficient CA mechanisms are Groves mechanisms.

We've already seen that VCG fails RM. Let's expand our search for RM mechanisms to a broader class that still includes efficient mechanisms.

Efficiency Reconsidered

RM is unsatifyingly easy to achieve if we simply drop efficiency.

Proposition

The following bundling mechanism satisfies DS truthfulness, participation, consumer sovereignty and revenue monotonicity:

- bundle all the goods together;
- 2 sell this bundle to the highest bidder;
- O charge this bidder the price offered by the second-highest bidder.

Unless we're content with CA mechanisms like this one, we need to require something *like* efficiency, but weaker...

3

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Maximality				

A mechanism is maximal with respect to a bidder i if, whenever i's valuation is sufficiently high, it never chooses allocations that could be augmented to satisfy i.

Definition (Maximality)

A CA mechanism M is maximal with respect to bidder i iff $\forall s \subseteq 2^G$, there exists a nonnegative constant $\alpha_{i,s}$ such that M always chooses an allocation where either:

- $v_i(a_i(\hat{v})) > 0$; or
- the allocation cannot be augmented to award i a bundle s for which $v_i(s) > \alpha_{i,s}.$
- $\alpha_{i,s}$ is sort of like a bidder/bundle-specific reserve price.
- a weakening of the "reasonableness" condition of [Nisan & Ronen, 2000]

Many interesting mechanisms are maximal

For example, a CA mechanism is maximal if the chosen allocation:

- ...is efficient
 - as before: VCG; other Groves mechanisms
- ...is strongly Pareto efficient¹
 - the allocation cannot be changed to make some bidder better off without making some other bidder worse off
 - this definition can be modified to include reserve prices
 - not equivalent to efficiency: e.g., the greedy mechanism of [Lehmann, O'Callaghan and Shoham, 2002].
- ...maximizes an affine function
 - "affine maximizers": choose an allocation that maximizes $\sum_i \omega_i \hat{v}_i(a_i) + \gamma_a$, given per-bidder ω 's and per-allocation γ 's
 - maximal wrt i as long as all γ are finite, $\omega_i>0$

¹Our AAAI paper considers only this condition, and calls it maximality. 📱 🔊 ५.०

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Outline				

2 Efficiency and Maximality

3 Criticality

Impossibility Result

5 Conclusions

э

(1日) (1日) (日)

Single-minded bidders

In order to define a useful property, we must first define a special class of bidders.

Definition (Single-minded Bidder)

A bidder is single-minded if she has the valuation function:

$$\forall s \in 2^G, \qquad v_i(s) = \begin{cases} v_i > 0 & \text{if } s \supseteq b_i \\ 0 & \text{otherwise} \end{cases}$$

- The bundles b_i are unknown to the auctioneer.
- We say that bidder *i* wins if she is allocated at least *b_i*.
- Bidder *i*'s valuation for b_i is denoted by v_i , and her declarations of this value and bundle are \hat{v}_i and \hat{b}_i respectively.

・ 同・ ・ ヨ・ ・ ヨ・

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Criticality				

From necessary and sufficient conditions for DS truthful mechanisms (see e.g., [Bartal, Gonen & Nisan, 2003]) it can easily be shown that dominant-strategy truthful mechanisms offer critical values to single-minded bidders.

Lemma (Criticality)

If a deterministic, direct CA mechanism satisfies DS truthfulness, participation and consumer sovereignty, then for every bidder i, every \hat{v}_{-i} and every $s \in 2^G$, there exists a finite critical value $cv_i(s, \hat{v}_{-i})$ where:

- if $\widehat{v}_i > cv_i(\widehat{b}_i)$, i wins at least \widehat{b}_i and pays $cv_i(\widehat{b}_i)$;
- if $\widehat{v}_i < cv_i(\widehat{b}_i)$, *i* loses and pays 0.

When \hat{v}_{-i} is understood from the context, we abbreviate $cv_i(s, \hat{v}_{-i})$ as $cv_i(s)$.

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Outline				

2 Efficiency and Maximality

3 Criticality

Impossibility Result

5 Conclusions

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Impossibility Result

Theorem

Let M be a deterministic, direct CA mechanism that allows bidders to express single-minded preferences, and that satisfies

- DS truthfulness;
- participation;
- consumer sovereignty; and
- maximality with respect to at least 2 bidders i and j.

Then M is not revenue monotonic.

Proof sketch

Proof Sketch

Consider three single-minded bidders.

- Construct valuations by repeatedly probing the mechanism to determine the bidders' critical values given various declarations by the others.
- **2** Derive an expression for revenue with all three bidders.
- **(3)** Derive an expression for revenue without bidder 1.
- Show that (3) > (2).

Proof – Constructing valuations

- Let $G = \{g_1, g_2\}$ and $N = \{1, 2, 3\}$
- Let $b_1 = \{g_1\}, b_2 = \{g_1, g_2\}$ and $b_3 = \{g_2\}$
- Let i = 1 and j = 3
- Define $v_1^* = \alpha_{1,b_1} + \varepsilon$ and $v_3^* = \alpha_{3,b_3} + \varepsilon$, for some $\varepsilon > 0$

3

Proof – Constructing valuations

- Let $G=\{g_1,g_2\}$ and $N=\{1,2,3\}$
- Let $b_1 = \{g_1\}$, $b_2 = \{g_1, g_2\}$ and $b_3 = \{g_2\}$
- Let i = 1 and j = 3
- Define $v_1^* = \alpha_{1,b_1} + \varepsilon$ and $v_3^* = \alpha_{3,b_3} + \varepsilon$, for some $\varepsilon > 0$

Dependencies:

Proof – Constructing valuations

- Let $G = \{g_1, g_2\}$ and $N = \{1, 2, 3\}$
- Let $b_1 = \{g_1\}$, $b_2 = \{g_1, g_2\}$ and $b_3 = \{g_2\}$
- Let i = 1 and j = 3
- Define $v_1^* = \alpha_{1,b_1} + \varepsilon$ and $v_3^* = \alpha_{3,b_3} + \varepsilon$, for some $\varepsilon > 0$

Dependencies:

Select v_1 , v_2 and v_3 as follows:

(by consumer sovereignty, these values are all finite)

Proof – Constructing valuations

• Let
$$G=\{g_1,g_2\}$$
 and $N=\{1,2,3\}$

• Let
$$b_1 = \{g_1\}$$
, $b_2 = \{g_1, g_2\}$ and $b_3 = \{g_2\}$

• Let
$$i = 1$$
 and $j = 3$

• Define
$$v_1^* = \alpha_{1,b_1} + \varepsilon$$
 and $v_3^* = \alpha_{3,b_3} + \varepsilon$,
for some $\varepsilon > 0$

Select v_1 , v_2 and v_3 as follows:

(by consumer sovereignty, these values are all finite)

2 $v_1 > \max\{cv_1(\emptyset, v_2, v_3^*), cv_1(\emptyset, v_2, \emptyset), v_1^*\}$

Dependencies:

Proof – Constructing valuations

- Let $G=\{g_1,g_2\}$ and $N=\{1,2,3\}$
- Let $b_1 = \{g_1\}$, $b_2 = \{g_1, g_2\}$ and $b_3 = \{g_2\}$
- Let i = 1 and j = 3
- Define $v_1^* = \alpha_{1,b_1} + \varepsilon$ and $v_3^* = \alpha_{3,b_3} + \varepsilon$, for some $\varepsilon > 0$

Dependencies:

Select v_1 , v_2 and v_3 as follows:

(by consumer sovereignty, these values are all finite)

- 2 $v_1 > \max\{cv_1(\emptyset, v_2, v_3^*), cv_1(\emptyset, v_2, \emptyset), v_1^*\}$

Proof – Part 1: all Bidders Present

 $\texttt{0} \ \ v_1 > cv_1(\varnothing, v_2, v_3^*) \text{, so if bidder } 3 \text{ bid } \langle b_3, v_3^* \rangle \text{ then}$

- bidder $1 \ \text{would win} \ (\text{by criticality lemma})$
- bidder 3 has the only non-overlapping bundle, and $v_3^* > \alpha_{3,b_3}$, so bidder 3 would also win (by maximality w.r.t. bidder 3)
- therefore, $cv_3(v_1,v_2,arnothing) \leq v_3^st$ (by criticality lemma)

Criticality

Proof – Part 1: all Bidders Present

 $\texttt{0} \ \ v_1 > cv_1(\varnothing, v_2, v_3^*) \text{, so if bidder } 3 \text{ bid } \langle b_3, v_3^* \rangle \text{ then}$

- bidder $1 \ \text{would win} \ (\text{by criticality lemma})$
- bidder 3 has the only non-overlapping bundle, and $v_3^* > \alpha_{3,b_3}$, so bidder 3 would also win (by maximality w.r.t. bidder 3)
- therefore, $cv_3(v_1,v_2,arnothing)\leq v_3^*$ (by criticality lemma)

2 $v_3 > cv_3(v_1^*, v_2, \emptyset)$, so symmetrically $cv_1(\emptyset, v_2, v_3) \le v_1^*$

Criticality

Proof – Part 1: all Bidders Present

 $\texttt{0} \ \ v_1 > cv_1(\varnothing, v_2, v_3^*) \text{, so if bidder } 3 \text{ bid } \langle b_3, v_3^* \rangle \text{ then}$

- bidder $1 \ \text{would win} \ (\text{by criticality lemma})$
- bidder 3 has the only non-overlapping bundle, and $v_3^* > \alpha_{3,b_3}$, so bidder 3 would also win (by maximality w.r.t. bidder 3)
- therefore, $cv_3(v_1,v_2,arnothing)\leq v_3^*$ (by criticality lemma)

2 $v_3 > cv_3(v_1^*, v_2, \emptyset)$, so symmetrically $cv_1(\emptyset, v_2, v_3) \le v_1^*$

- $\ \, {\mathfrak V}_1 > {\mathfrak v}_1^* \ \text{and} \ \, {\mathfrak v}_3 > {\mathfrak v}_3^*, \ \text{so when all bidders bid} \ \langle b_i, {\mathfrak v}_i \rangle :$
 - bidders $1 \ {\rm and} \ 3 \ {\rm win}$
 - bidder 2 pays zero (by participation)
 - the revenue of the auction is

 $R=cv_1(arnothing, v_2, v_3)+cv_3(v_1, v_2, arnothing)$ (by criticality lemma)

Criticality

Proof – Part 1: all Bidders Present

 $\texttt{0} \ \ v_1 > cv_1(\varnothing, v_2, v_3^*) \text{, so if bidder } 3 \text{ bid } \langle b_3, v_3^* \rangle \text{ then}$

- bidder $1 \ \text{would win} \ (\text{by criticality lemma})$
- bidder 3 has the only non-overlapping bundle, and $v_3^* > \alpha_{3,b_3}$, so bidder 3 would also win (by maximality w.r.t. bidder 3)
- therefore, $cv_3(v_1,v_2,arnothing)\leq v_3^*$ (by criticality lemma)

2 $v_3 > cv_3(v_1^*, v_2, \emptyset)$, so symmetrically $cv_1(\emptyset, v_2, v_3) \le v_1^*$

- \bullet $v_1 > v_1^*$ and $v_3 > v_3^*$, so when all bidders bid $\langle b_i, v_i \rangle$:
 - $\bullet~$ bidders 1~ and 3~ win
 - bidder 2 pays zero (by participation)
 - the revenue of the auction is

 $R=cv_1(arnothing, v_2, v_3)+cv_3(v_1, v_2, arnothing)$ (by criticality lemma)

Conclusion (Part 1)

 $R \le v_1^* + v_3^*.$

Proof – Part 2: Bidder 1 not Present

- $\ \, {\mathfrak V}_3> cv_3(\varnothing, {\mathfrak V}_2, \varnothing), \ \, {\rm so}$
 - bidder 3 wins (by criticality lemma)
 - b_2 and b_3 overlap so bidder 2 cannot also win
 - bidder 2 pays zero (by participation)
 - the revenue of the auction is $R_{-1} = cv_3(\emptyset, v_2, \emptyset)$

Proof – Part 2: Bidder 1 not Present

$$\ \, {\mathfrak V}_3 > cv_3(\varnothing, {\mathfrak V}_2, \varnothing), \ \, {\rm so} \ \,$$

- bidder 3 wins (by criticality lemma)
- b_2 and b_3 overlap so bidder 2 cannot also win
- bidder 2 pays zero (by participation)
- the revenue of the auction is $R_{-1} = cv_3(\emptyset, v_2, \emptyset)$
- 2 $v_2 > cv_2(\varnothing, \varnothing, v_1^* + v_3^* + k)$, so
 - if bidder 3 were to bid $\langle b_3, v_1^* + v_3^* + k \rangle$ then she would lose (by criticality lemma)
 - therefore $cv_3(arnothing, v_2, arnothing) \geq v_1^* + v_3^* + k$ (by criticality lemma)

Proof – Part 2: Bidder 1 not Present

- bidder 3 wins (by criticality lemma)
- b_2 and b_3 overlap so bidder 2 cannot also win
- bidder 2 pays zero (by participation)
- the revenue of the auction is $R_{-1} = cv_3(\emptyset, v_2, \emptyset)$

②
$$v_2 > cv_2(\varnothing, \varnothing, v_1^* + v_3^* + k)$$
, so

- if bidder 3 were to bid $\langle b_3, v_1^* + v_3^* + k \rangle$ then she would lose (by criticality lemma)
- therefore $cv_3(arnothing, v_2, arnothing) \geq v_1^* + v_3^* + k$ (by criticality lemma)

Conclusion (Part 2)

 $R_{-1} \ge v_1^* + v_3^* + k$, k > 0.

Conclusion (Part 1)

 $R \le v_1^* + v_3^*.$

Conclusion (Part 2)

 $R_{-1} \geq v_1^* + v_3^* + k$, k > 0.

Conclusion (Overall)

 $R < R_{-1}$; therefore M is not revenue monotonic.

<ロ> (四) (四) (三) (三) (三)

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Observation	IS			

- Our result does not require that bidders are single-minded
 - instead, it makes requirements about how the mechanism behaves when bidders state single-minded preferences

- ∢ ⊒ →

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Observatio	ns			

- Our result does not require that bidders are single-minded
 - instead, it makes requirements about how the mechanism behaves when bidders state single-minded preferences
- There need not be exactly three bidders or two goods
 - it's easy to construct valuations for additional bidders so that they play no role
 - additional goods can be included in bundles or ignored

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Observation	IS			

- Our result does not require that bidders are single-minded
 - instead, it makes requirements about how the mechanism behaves when bidders state single-minded preferences
- There need not be exactly three bidders or two goods
 - it's easy to construct valuations for additional bidders so that they play no role
 - additional goods can be included in bundles or ignored
- $R_{-1} R = k$, a constant that we can set freely
 - thus the possible revenue gain from dropping one bidder is unbounded

RM over the set of goods

Corollary (RM over the set of goods)

Let M be a deterministic, direct CA mechanism that allows bidders to express single-minded preferences, and that satisfies

- DS truthfulness;
- participation;
- consumer sovereignty; and
- maximality with respect to at least 2 bidders i and j.

Then M is not revenue monotonic over the set of goods.

- proof sketch: add an extra good to bidder 1's bundle and drop that good (which entails dropping bidder 1)
- note: works even without substitutes

Pseudonomous bidding

Corollary (pseudonymous bidding)

Let M be a deterministic, direct CA mechanism that allows bidders to express single-minded preferences, and that satisfies

- DS truthfulness:
- o participation;
- consumer sovereignty; and
- maximality with respect to at least 2 bidders i and j.

Then M is not pseudonymous-bid proof.

- proof sketch: in a world with only bidders 2 and 3, bidder 3 gains by pseudonymously bidding as bidder 1
- in previous literature (e.g., [Yokoo, 2006]) such a result is shown only for DS, efficient (i.e., Groves) mechanisms.

3

Introduction	Efficiency and Maximality	Criticality	Impossibility Result	Conclusions
Outline				

- 2 Efficiency and Maximality
- 3 Criticality
- Impossibility Result

æ

(1日) (日) (日)

We have shown that reasonable, DS truthful CA mechanisms are not revenue monotonic.

Our result can be interpreted in several ways:

- in a DS mechanism, "don't leave money on the table" isn't an innocuous design decision.
- some "problems with VCG" are in fact properties of broad classes of CA mechanisms
- if you care about revenue in a CA, set reserve prices carefully and/or bundle goods
- "more competition" isn't the same as more bidders

Theoretical:

Look for necessary and/or sufficient conditions for revenue monotonicity

Experimental:

- Conduct experiments to investigate the frequency and degree of RM failures in realistic settings
 - e.g., using test data from CATS
- Find a DS truthful CA mechanism that violates RM with minimal probability